

Powerful handheld multigas analyser

for industrial combustion monitoring and emission measurements

MRU – over 30 years of innovative gas analysis!

The slim multi talent handheld flue gas analyser using up to 7 sensors

Suitable for emission monitoring of combustions and industrial processes.

Intuitive software menu and bright colour display will guide you through all measuring programs. New MSM-technology for measuring cells will offer you easy, fast plug & play pre-calibrated cells to avoid long time analyser service downtime.

Store up to 16.000 data sets directly in the analyser's internal data storage or on micro-SD card, or even use Bluetooth™ for wireless data transfer to notebook or MRU4u data app for smartphone or tablet. Printing via infrared, high speed thermal printer is at the tip of your fingers.

Convenient nylon bag

Shoulder strap

Main features:

- exhaust gas measurement for all current combustibles
- (differential-) pressure measurement up to \pm 100 mbar
- temperature measurement
- leakage testing on gas pipes
- gas flow velocity
- automatic measurement incl.CO-average calculating
- high-range CO measurement
- NO_x measurement, e.g. for CHPs
- HC "sniffer" for leak detection
- rechargeable Lithium-lon battery for approx. 15 hours operation

Hands free operation with magnetic power using the 3 magnets from the analyser's rear side, this one will firmly stick on ferrous surfaces.

Storage, transfer or print measured data
using the multiple choices among micro-SD card, mini-USB, Bluetooth™ for wireless transfer to smartphone or tablet or infrared printing.

Condensate and dirt are kept away using the large condensate trap with Teflon coated particulate filter.

Gas flow velocity measurement with m/s, absolute pressure sensor and different pitot tubes.

Probes and hoses
MRU offers a wide range
of standard (up to 800 °C)
and industrial probes
(up to 1.100 °C) with
various lengths.

Product information: see www.mru.eu or scan adjacent QR-code

OPTIMA7

Technical specifications

Measurement components	Range	Resolution	Accuracy
·	0 25,00 Vol%	0,01%	± 0.2 Vol% abs.
Oxygen O ₂	,	0,01%	
Carbon dioxide CO ₂ IR bench	0 40,00 Vol%		± 0,3 % or 5 % of the measured value **
Hydrocarbon HC NDIR	100 40.000 ppm	10 ppm	± 400 ppm or 5% reading **
Carbon monoxide CO (H2-comp.)	0 4.000 / 10.000 ppm*	0,01%	± 10 ppm or 5 % reading up to 4.000 ppm ** or 10 % reading up to 10.000 ppm **
Carbon monoxide CO low (special software and calibration)	0 500 ppm	0,1 ppm	± 2 ppm or 5 % reading **
Carbon monoxide CO very high	0 40.000 / 100.000 ppm *		± 0,02 % or 5 % reading up to 4,00 % ** or 10 % reading up to 10,00 %
Nitric monoxide NO	0 1.000 / 5.000 ppm*	1 ppm	± 5 ppm or 5 % reading up to 1.000 ppm ** or 10 % reading up to 5.000 ppm **
Nitric monoxide NO low (special software and calibration)	0 300 ppm	0,1 ppm	± 2 ppm or 5 % reading **
Nitric dioxide NO ₂	0 200 / 1.000 ppm*	1 ppm	± 5 ppm or 5% reading up to 200 ppm** or 10% reading up to 1.000 ppm **
Nitric dioxide NO ₂ low (special software and calibration)	0 100 ppm	0,1 ppm	± 2 ppm or 5% reading **
Sulfur dioxide SO ₂	0 2.000 / 5.000 ppm*	1 ppm	± 10 ppm or 5 % reading up to 2.000 ppm ** or 10 % reading up to 5.000 ppm **
Hydrogen sulfide H₂S	0 500 / 2.000 ppm*	1 ppm	± 5 ppm or 5% reading up to 500 ppm ** or 10% reading up to 5.000 ppm **
Stack gas temperature T.Gas	0 1.200 °C	0,1 °C	\pm 2 °C < 200 °C or 1 % reading up to 200 °C **
Combustion air temperature T.Air	0 100 °C	0,1 °C	±1°C
Temperature / Differential temperature T1/T2	−40°C 1.200°C (with thermocouple type K)	0,1℃	± 2°C or 1% reading **
Draught/Differential pressure	-300 + 300 hPa	0,01 hPa	± 0,02 hPa
Calculated values (fuel type depending)			
	ziiuiiiq)		
* * * * * * * * * * * * * * * * * * * *	0 20%		± 0,3 Vol% abs.
Carbon dioxide CO ₂	0 20%		± 0,3 Vol% abs.
Carbon dioxide CO ₂ Heat losses qA	0 20 % 0 99,9 %		± 0,3 Vol% abs.
Carbon dioxide CO ₂ Heat losses qA Efficiency	0 20 % 0 99,9 % 0 120 %		± 0,3 Vol% abs.
Carbon dioxide CO ₂ Heat losses qA Efficiency Air Ratio	0 20% 0 99,9 % 0 120 % 1 9,99 %		± 0,3 Vol% abs.
Carbon dioxide CO ₂ Heat losses qA Efficiency	0 20% 0 99,9 % 0 120 % 1 9,99 % 0 99,9 % based on the large fuel type		heat losses,
Carbon dioxide CO ₂ Heat losses qA Efficiency Air Ratio Excess Air	0 20% 0 99,9% 0 120% 1 9,99% 0 99,9% based on the large fuel type combustion efficiency, flue mg/Nm³, NO _x as mg/m³ NO	gas dew point, CO/CO ₂ ₂ true measurement of N	heat losses, ratio $NO_X = NO + NO_2$,
Carbon dioxide CO ₂ Heat losses qA Efficiency Air Ratio Excess Air Combustion calculations	0 20 % 0 99,9 % 0 120 % 1 9,99 % 0 99,9 % based on the large fuel type combustion efficiency, flue	gas dew point, CO/CO_2 t_2 true measurement of Normalisation) to user sett	heat losses, ratio $NO_X = NO + NO_2$,
Carbon dioxide CO ₂ Heat losses qA Efficiency Air Ratio Excess Air Combustion calculations Emission calculations CO-sensor purge (option)	0 20% 0 99,9% 0 120% 1 9,99% 0 99,9% based on the large fuel type combustion efficiency, flue mg/Nm³, NO _x as mg/m³ NO including O ₂ referencing (no	gas dew point, CO/CO_2 t_2 true measurement of Normalisation) to user sett	heat losses, ratio $NO_X = NO + NO_2$,
Carbon dioxide CO ₂ Heat losses qA Efficiency Air Ratio Excess Air Combustion calculations Emission calculations CO-sensor purge (option) General specifications	0 20% 0 99,9% 0 120% 1 99,9% 0 99,9% based on the large fuel type combustion efficiency, flue mg/Nm³, NO _x as mg/m³ NO including O ₂ referencing (no using second pump, for sen	gas dew point, CO/CO ₂ true measurement of Normalisation) to user sett sor protection	heat losses, ratio $NO_X = NO + NO_2$,
Carbon dioxide CO ₂ Heat losses qA Efficiency Air Ratio Excess Air Combustion calculations Emission calculations CO-sensor purge (option) General specifications Operation temperature	0 20% 0 99,9% 0 120% 1 99,9% 0 99,9% based on the large fuel type combustion efficiency, flue mg/Nm³, NO _x as mg/m³ NO including O ₂ referencing (no using second pump, for sen	gas dew point, CO/CO ₂ true measurement of Normalisation) to user sett sor protection	heat losses, ratio $NO_X = NO + NO_2$,
Carbon dioxide CO ₂ Heat losses qA Efficiency Air Ratio Excess Air Combustion calculations Emission calculations CO-sensor purge (option) General specifications Operation temperature Storage temperature	0 20% 0 99,9% 0 120% 1 9,99% 0 99,9% based on the large fuel type combustion efficiency, flue mg/Nm³, NO _x as mg/m³ NO including O ₂ referencing (no using second pump, for sen + 5 + 45 °C, max. 95 % RH, 0 + 50 °C	gas dew point, CO/CO ₂ true measurement of Normalisation) to user sett sor protection non condensing	heat losses, ratio $NO_X = NO + NO_2$,
Carbon dioxide CO ₂ Heat losses qA Efficiency Air Ratio Excess Air Combustion calculations Emission calculations CO-sensor purge (option) General specifications Operation temperature Storage temperature Data storage	0 20% 0 99,9% 0 120% 1 9,99% 0 99,9% based on the large fuel type combustion efficiency, flue mg/Nm³, NO _x as mg/m³ NO including O_2 referencing (no using second pump, for sen + 5 + 45 °C, max. 95 % RH, 0 + 50 °C dynamic, up to 16.000 meas	gas dew point, CO/CO ₂ true measurement of Normalisation) to user sett sor protection non condensing	heat losses, ratio NO _X = NO + NO ₂ , able value
Carbon dioxide CO ₂ Heat losses qA Efficiency Air Ratio Excess Air Combustion calculations Emission calculations CO-sensor purge (option) General specifications Operation temperature Storage temperature Data storage Interfaces	0 20% 0 99,9% 0 120% 1 99,9% 0 99,9% based on the large fuel type combustion efficiency, flue mg/Nm³, NO _x as mg/m³ NO including O ₂ referencing (no using second pump, for send the second pump, for send t	gas dew point, CO/CO₂ ½ true measurement of Normalisation) to user sett sor protection non condensing surements ooth™ (data transfer to s	heat losses, ratio NO _X = NO + NO ₂ , able value smartphone, tablet or PC)
Carbon dioxide CO ₂ Heat losses qA Efficiency Air Ratio Excess Air Combustion calculations Emission calculations CO-sensor purge (option) General specifications Operation temperature Storage temperature Data storage Interfaces Power supply	0 20% 0 99,9% 0 120% 1 99,9% 0 99,9% based on the large fuel type combustion efficiency, flue mg/Nm³, NO _x as mg/m³ NO including O ₂ referencing (no using second pump, for sentence of the companies of the	gas dew point, CO/CO₂ true measurement of Normalisation) to user settlesor protection non condensing surements tooth™ (data transfer to steep (approx. 15 h operation)	heat losses, ratio $NO_X = NO + NO_2$, able value smartphone, tablet or PC)
Carbon dioxide CO ₂ Heat losses qA Efficiency Air Ratio Excess Air Combustion calculations Emission calculations CO-sensor purge (option) General specifications Operation temperature Storage temperature Data storage Interfaces Power supply Mains	0 20% 0 99,9% 0 120% 1 9,99% 0 99,9% based on the large fuel type combustion efficiency, flue mg/Nm³, NO _x as mg/m³ NO including O₂ referencing (no using second pump, for sen + 5 + 45 °C, max. 95 % RH, 0 + 50 °C dynamic, up to 16.000 meas mini-USB, SD, Infrared, Bluet high energy Lithium-Ion bar wall-plug grid power supply	gas dew point, CO/CO₂ true measurement of Normalisation) to user settlesor protection non condensing surements tooth™ (data transfer to steep (approx. 15 h operation)	heat losses, ratio $NO_X = NO + NO_2$, able value smartphone, tablet or PC)
Carbon dioxide CO ₂ Heat losses qA Efficiency Air Ratio Excess Air Combustion calculations Emission calculations CO-sensor purge (option) General specifications Operation temperature Storage temperature Data storage Interfaces Power supply Mains Protection class	0 20% 0 99,9% 0 120% 1 9,99% 0 99,9% based on the large fuel type combustion efficiency, flue mg/Nm³, NO _x as mg/m³ NO including O ₂ referencing (no using second pump, for sentence of the second pump, for sent	gas dew point, CO/CO ₂ true measurement of Normalisation) to user sett sor protection non condensing surements tooth™ (data transfer to settery (approx. 15 h operat, 100 - 240 Vac / 50 60	heat losses, ratio $NO_X = NO + NO_2$, able value smartphone, tablet or PC)
Carbon dioxide CO ₂ Heat losses qA Efficiency Air Ratio Excess Air Combustion calculations Emission calculations CO-sensor purge (option) General specifications Operation temperature Storage temperature Data storage Interfaces Power supply Mains Protection class Certification	0 20% 0 99,9% 0 120% 1 99,9% 0 99,9% based on the large fuel type combustion efficiency, flue mg/Nm³, NO _x as mg/m³ NO including O₂ referencing (no using second pump, for send the second pump, for send th	gas dew point, CO/CO ₂ true measurement of Normalisation) to user sett sor protection non condensing surements tooth™ (data transfer to settery (approx. 15 h operat, 100 - 240 Vac / 50 60	heat losses, ratio $NO_X = NO + NO_2$, able value smartphone, tablet or PC)
Carbon dioxide CO ₂ Heat losses qA Efficiency Air Ratio Excess Air Combustion calculations Emission calculations CO-sensor purge (option) General specifications Operation temperature Storage temperature Data storage Interfaces Power supply Mains Protection class	0 20% 0 99,9% 0 120% 1 9,99% 0 99,9% based on the large fuel type combustion efficiency, flue mg/Nm³, NO _x as mg/m³ NO including O ₂ referencing (no using second pump, for sentence of the second pump, for sent	gas dew point, CO/CO ₂ 2 true measurement of Normalisation) to user settesor protection non condensing surements booth™ (data transfer to settery (approx. 15 h operator), 100 - 240 Vac / 50 60	heat losses, ratio $NO_X = NO + NO_2$, able value smartphone, tablet or PC)

MRU – sustainable analysing technology for more than 30 years!

MRU · Messgeraete fuer Rauchgase und Umweltschutz GmbH

Fuch shalde 8 + 12 \cdot 74172 Neckarsulm-Obereisesheim \cdot Germany Phone +49 7132 99620 \cdot Fax +49 7132 996220 info@mru.de \cdot www.mru.eu